Practice Test - 2020 B.Sc. Semester - IV ExaminationTuesday, $5^{th}May$, 2020Time: 10.00 to 1.00 pmCourse Code: USC04CSTA22M.Marks: 70(Probability Distributions)
B.Sc. Semester - IV Examination Tuesday, $5^{th}May$, 2020 Time: 10.00 to 1.00 pm Course Code: USC04CSTA22 M.Marks: 70 (Probability Distributions)
Tuesday, 5 th May, 2020 Time: 10.00 to 1.00 pm Course Code: USC04CSTA22 Marks: 70 (Probability Distributions)
Time: 10.00 to 1.00 pm Course Code: USC04CSTA22 M.Marks: 70 (Probability Distributions)
(Probability Distributions) Note: (i) Simple/Scientific calculator is allowed. (ii) Statistical table is allowed or provided on request. (iii) Figures to the right indicate marks. (iv) Q.3 to 6 each sub question is of 5 marks
Note: (i) Simple/Scientific calculator is allowed. (iii) Figures to the right indicate marks. (iv) Q.3 to 6 each sub question is of 5 marks Q.1 Multiple Choice Questions (10 × 1) (1) Poisson distribution is a limiting case of (a) Binomial distribution (c) Hypergeometric distribution (b) Negative Binomial distribution (d) Both (a) and (b) (2) If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6 (b) 11 (3) For a normal distribution (a) Mean = Median = Mode (b) Coefficient of skewness is zero
(iii) Figures to the right indicate marks. (iv) Q.3 to 6 each sub question is of 5 marks Q.1 Multiple Choice Questions (10 × 1) (1) Poisson distribution is a limiting case of (a) Binomial distribution (b) Negative Binomial distribution (c) Hypergeometric distribution (d) Both (a) and (b) (2) If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6 (b) 11 (c) 10 (d) None of the above (3) For a normal distribution (a) Mean = Median = Mode (b) Coefficient of skewness is zero
Q.1 Multiple Choice Questions (10 × 1) (1) Poisson distribution is a limiting case of (a) Binomial distribution (a) Binomial distribution (b) Negative Binomial distribution (c) Hypergeometric distribution (d) Both (a) and (b) (2) If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6 (b) 11 (c) 10 (3) For a normal distribution (a) Mean = Median = Mode (b) Coefficient of skewness is zero
Q.1 Multiple Choice Questions (10 × 1) (1) Poisson distribution is a limiting case of (a) Binomial distribution (b) Negative Binomial distribution (c) Hypergeometric distribution (d) Both (a) and (b) (2) If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6 (b) 11 (c) 10 (d) None of the above (3) For a normal distribution (b) Coefficient of skewness is zero
(1)Poisson distribution is a limiting case of (a) Binomial distribution (c) Hypergeometric distribution (c) Hypergeometric distribution (d) Both (a) and (b)(2)If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6 (b) 11 (c) 10 (d) None of the above(3)For a normal distribution (a) Mean = Median = Mode(b)Coefficient of skewness is zero
(a) Binomial distribution(b) Negative Binomial distribution(c) Hypergeometric distribution(d) Both (a) and (b)(2)If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6(b) 11(c) 10(d) None of the above(3)For a normal distribution(a) Mean = Median = Mode(b) Coefficient of skewness is zero
(c) Hypergeometric distribution(d) Both (a) and (b)(2)If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6(b) 11(c) 10(d) None of the above(3)For a normal distribution (a) Mean = Median = Mode(b) Coefficient of skewness is zero
(2) If $P(x) = \frac{1}{11}$, $x = 0, 1, 2, 10$ and zero otherwise, is the p.m.f of X then $V(X) = $ (a) 6 (b) 11 (c) 10 (d) None of the above (3) For a normal distribution (a) Mean = Median = Mode (b) Coefficient of skewness is zero
(a) 6 (b) 11 (c) 10 (d) None of the above (3) For a normal distribution (a) Mean = Median = Mode (b) Coefficient of skewness is zero
 (3) For a normal distribution (a) Mean = Median = Mode (b) Coefficient of skewness is zero
(a) Mean = Median = Mode (b) Coefficient of skewness is zero
(c) $P(\mu - 3\sigma < X < \mu + 3\sigma) = 0.9972$ (d) All of the above
(4) Let X have Bernoulli distribution with mean 0.4. What is the variance of $(2X - 3)$?
(a) 0. 24 (b) 0. 48 (c) 0. 6 (d) 0. 96
(5) Let X be a chi square variate with 15 d.f, determine the value of k such that $P(X > k) = 0.025$.
(a) 6. 262 (b) 27. 488 (c) 30. 578 (d) 24. 996
(6) The mean, median and mode for Binomial distribution will be equal when $(a) = a$
(a) p = q (b) p > q (c) p < q (d) None
Let X be a r.v. with pdf $f(x) = \frac{1}{\beta} e^{-\alpha x} x^{\beta-1}, x > 0, \alpha, \beta > 0$ and zero otherwise
If $E(X) = 20$ and $V(X) = 10$ then (α, β) is
(a) (2,20) (b) (2,40) (c) (4,20) (d) (4,40)
(8) We believe that 90% of the SYBSc Mathematics students of Sardar Patel University consider statistics to be an exciting
subject. Suppose we randomly and independently selected 33 students from the SYBSc Mathematics students. Assume
that the belief is true. Find the probability of observing 32 or more students who consider statistics to be an exciting
(a) 0.1442 (b) 0.1153 (c) 0.0509 (a) 0.0556 (c) 0.0509 (c) 0.0556 (c) 0.0509 (c) 0.0556 (c) 0.0556 (c) 0.0556 (c) 0.0509 (c) 0.0556 (c)
(a) e^{-1} (b) e^{-2} (c) $1 - e^{-1}$ (d) $1 - e^{-2}$
(0) (0)
respectively. What are the variance of $W = 3X - 2Y$?
(a) 72 (b) 36 (c) 6 (d) 8.49
Q.2 Short Type Questions (Attempt Any Ten) (10 × 2)
(1) If $X \sim N(5, 4)$, what is the prob. that $P(8 < Y < 13)$ where $Y = 2X + 1$? State clearly the result you had used to
calculate the required probability.
(2) If $M_X(t) = \left(1 - \frac{t}{2}\right)^{-1}$, find the third cumulant.
(3) Let $X \sim P(m)$ and $P(X = 0) = 0.323$, find the value of m and use this to calculate $P(X = 3)$.
(4) A class contains 8 boys and 7 girls. The teacher selects 3 of the children at random and without replacement. Calculate
the probability that the number of boys selected exceeds the number of girls selected.
(5) A r.v. X is uniformly distributed over (a, b) . If $E(X) = -1/2$ and $V(X) = 3/4$, find the values of a and b .
(6) A new tax law is expected to benefit "middle income" families, those with incomes between \$20,000 to \$30,000. If
family income follows normal distribution with mean \$25,000 and standard deviation \$10,000, what percentage of the

	population will benefit from the new tax law?				
(7)	Obtain the recurrence relation for the probabilities of Binomial distribution.				
(8)	It is known that the resistance of carbon resistors is normally distributed with mean 1200 and s.d 120 ohms. If 12				
	resistors are randomly selected from a shipment, what is the probability that the average resistance will be more than				
	1250 ohms?				
(9)	The following graph shows the	e uniform distribution of wa	iting times, in minutes, at An	and railway station. Find the	
	area of the shaded region.				
(10)	You wish to draw a black Ace	from deck of cards.			
(- /	(i) What is the chance you draw your first black Ace on the 3 rd draw?				
	(<i>ii</i>) What is the probability of	drawing 2 or more black Aces	s in 3 independent draws of a c	card?	
(11)	A life insurance agent sells on average 3 life insurance policies per week. Use Poisson distribution to calculate the				
	probability that in a given week he will sell (i) some policies (ii) 2 or more policies but less than 5 policies.				
(12)	Let X and Y be two independent random variables with moment generating functions $M_{Y}(t) = e^{2t+4t^{2}}$ and				
	$M_V(t) = e^{t+6t^2}$ Determine the moment generating of $X + V$ and identify and name the distribution of $X + V$				
Q.3 (a)	The probability mass function of a r.v. X is				
	$P(X = x) = \left(\frac{2}{2}\right)^{x} \left(\frac{1}{2}\right), x = 1, 2, 3,$ and zero otherwise, Find $V(X)$ and $P(X > 2)$				
(b)	A bowl contains 10 balls, of which 4 are red and 6 are white. Balls are randomly selected with replacement from the				
. ,	bowl until 4 red balls have been selected. Let X be the number of white balls drawn before the fourth red ball is				
	selected. Find the mean and variance of X. Determine $P(X = 6)$.				
		OR			
Q.3 (a)	Define Hypergeometric distrib	ution. Obtain Binomial distrik	oution as a limiting case of Hyp	ergeometric distribution.	
(b)	It was claimed that 1 out of 100 dentists recommend Colgate sensitive to his patients for sensitivity of teeth. Suppose				
	that the claim is true. If 120 dentists are selected independently and at random, let X be the number of dentists who				
	recommend Colgate sensitive to his/her patients. (i) How is X distributed? (ii) Give the mean and variance of X.				
	(<i>iii</i>) Determine $P(X \ge 4)$				
Q.4 (a)					
(b)	The distribution of 1000 examinees according to marks percentage is given below:				
	% of marks	Less than 40	40 - 75	75 or above	
	No. of examinees	430	420	150	
	Assuming the marks percentage to follow a normal distribution, calculate the mean and standard deviation of marks				
	If 40% examinees are to fail, what should be the passing marks?				
OR					
Q.4 (a)	Let $X \sim U(-2, 2)$. Show that all	I the odd order moments are	zero. Obtain an expression for	even order moments.	
(b)	A r.v. X has pdf $f(x) = kx^4(1)$	$(-x)^4$, $0 < x < 1$ and zero of	otherwise. Determine the valu	e of <i>k</i> .	
	Find $P(X - \mu \le 2\sigma)$ where μ and σ are the mean and s.d of r.v. X.				
Q.5 (a)	About 10% of the population is left – handed. Use the normal approximation to approximate the probability that in				
	class of 150 students, (i) at le	east 25 of them are left – han	ded. (<i>ii</i>) between 15 and 20	are left – handed.	
(b)	Suppose that the weights in	lbs of American adult can be	represented by a normal val	riate with mean 150 lbs and	
	variance 900 lb ² . An elevator	containing a sign "Maximum	12 people can safely carry 20	000 lbs". Find the probability	
	that 12 people will not ove	rioad elevator. State and p	rove the result you have use	ed to calculate the required	
	probability.				
05 (2)	Prove that the sum of two in	UK Janandant hinomial variatas	is also a hinamial variato. Is th	a difference of two hinemial	
(a)	variates is binomial?	aependent binomial variates	is also a pinomial variate. Is th	ie unierence of two pinomial	
(٣)	Marks obtained by contain at	idente are accument to be an	rmally distributed with many	65 and variance 25 If three	
(a)	students are taken at rendem	what is the probability that a	many distributed with mean	05 and variance 25. If three marks over 70°	
1	scuterits are taken at random	, what is the probability that e	zachy two of them will have h		

Q.6 (a)	Do as directed:			
	(i) If X_1, X_2, \dots, X_{10} be a random sample from a standard normal distribution. Find the numbers a and b such that			
	$P\left(a \le \sum_{i=1}^{10} X_i^2 \le b\right) = 0.95$			
	(<i>ii</i>) Let $X_1, X_2,, X_{10}$ be a random sample of size $n = 10$ from a normal distribution with variance $\sigma^2 = 0.8$. Find			
	two positive numbers a and b such that $P(a \leq S^2 \leq b) = 0.90$ where			
	$S^{2} = \frac{1}{9} \sum_{i=1}^{10} (X_{i} - \bar{X})^{2}$			
(b)	If S_1^2 and S_2^2 are the variances of independent random samples of size $n_1 = 10$ and $n_2 = 15$ from normal populations			
	with equal variances, find a constant 'k' so that $P\left(rac{S_1^2}{S_2^2}>k ight)=0.95$ where			
	$S_1^2 = \frac{1}{9} \sum_{i=1}^{10} (X_i - \overline{X})^2 \text{ and } S_2^2 = \frac{1}{14} \sum_{i=1}^{15} (Y_i - \overline{Y})^2$			
OR				
Q.6 (a)	Let $\overline{X_1}$ and $\overline{X_2}$ be the means of samples of sizes $n_1=4$ and $n_2=9$ from two normal populations with means $\mu_1=$			
	2, $\mu_2 = 4$ and variances $\sigma_1^2 = 6$ and $\sigma_2^2 = k$. If $P(\overline{X_1} - \overline{X_2} > 8) = 0.0228$, then what is the value of 'k'?			
(b)	Let \overline{X} and S^2 be the sample mean and variance associated with a r.s. of size $n = 12$ from a normal distribution with mean μ and variance 144.			
	(i) Find the constants a and b so that $P(a \le S^2 \le b) = 0.99$			
	(ii) Find a constant k so that $P\left(-k \le \frac{\overline{X}-\mu}{S} \le k\right) = 0.99$, where $\overline{X} = \frac{1}{n} \sum Xi$ and $S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$			